Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference

作者信息

MIT Song Han实验室

链接:Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference

摘要

As the demand for long-context large language models (LLMs) increases, models with context windows of up to 128K or 1M tokens are becoming increasingly prevalent. However, long-context LLM inference is challenging since the inference speed decreases significantly as the sequence length grows. This slowdown is primarily caused by loading a large KV cache during self-attention. Previous works have shown that a small portion of critical tokens will dominate the attention outcomes. However, we observe the criticality of a token highly depends on the query. To this end, we propose Quest, a query-aware KV cache selection algorithm. Quest keeps track of the minimal and maximal Key values in KV cache pages and estimates the criticality of a given page using Query vectors. By only loading the Top-K critical KV cache pages for attention, Quest significantly speeds up self-attention without sacrificing accuracy. We show that Quest can achieve up to 2.23x self-attention speedup, which reduces inference latency by 7.03x while performing well on tasks with long dependencies with negligible accuracy loss. Code is available at this http URL.

一句话总结概括

Motivation

创新点或贡献

具体设计

实验评估

背景

先前工作存在的问题概述

难点

补充背景

思考角度

我如何做这个问题

这个洞见可以引申出其他其他方法吗

该洞见是否可以迁移到其他领域中

该工作有什么可能可以改进的地方

Q&A

results matching ""

    No results matching ""